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TTL — Tropical Tropopause Layer LATITUDE

LMS - Lowermost Stratosphere LS — Lower Stratosphere UT — Upper Troposphere



= Lifetimes of Trace Gases in Tropical
Tropopause Layer (TIL)™ impacted by:

CO + OH

Air resides|in TIL severallweeks before crossing the
tropopause:

— Radiation Budget — Dynamicsiin TTL
ozone and aerosols




1) Biomass burning pollution can impact the
composition (e.g., OH, ozone, CO) of the UT/LS
significantly.
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2) There are two™ main cross-tropopause transport

pathways of biomass burning pollution:
a) Quasi-horizontal, quasi-isentropic exchange.
b) Slow ascent in TTL.

* Convection does not penetrate the tropical tropopause in CTM.

Liu & Zipser (2005) and Rossow & Pear! (2007) say ~ 1% or
less penetrate tropical tropopause and ~ 2% or less enter TTL.




1) Seasonal variations in timing| of both CO sources and
transport conspire to create a quasi-annual
oscillation in the CO composition in the TIL that
evolves into an annualioscillation in transit to the
tropical LS:

2) There are two main sources; of interannual
variability (TAV) in the composition of the tropical
UT/LS:

a) locations of: deep convection, especially ENSO; in
relation to sources

b) biomass burning




Two Simulations:

1) Tagged CO : CO from various sources are treated
as separate tracers.

2) Uniform Tracer : uniform emissions over globe with
25-day lifetime.

Uniform Tracer = Dynamical Tracer

These simulations allow us to deconvolve the impact of
the variation of transport on CO in the UT/LS from the
impact of the variation of sources.
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= Semi-annual oscillation in biomass burning source.
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—Seasonal variation in biomass burning plays a role, but ...

—Seasonal variation in dynamics also plays a role, but ....
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NH winter: Seasonally high transport and seasonally high CO
conspire to “fill in” minimum in “biomass burning” CO.

SH winter: Seasonally low transport and seasonally low CO
conspire to “deepen” minimum — S. Asian monsoon lofts Indian
pollution > 15°N.
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= Methane higher : 3-d “fresh” source v. surface emissions only depleted.

— Dynamics can either enhance or damp a source’s impact on LS
(e.g., SH vs NH BB CO).



Lowermost

Stratosphere - NH

— LMS does not

contribute to CO tape

recorder.

— Biomass burning
from SE Asia
dominates.

— Semi-annual
oscillation < 30°N

— Annual oscillation

> 30°N
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Interannual
Variability+

* Seasonal emissions

same each year.
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= Convective mass flux at 300 mb ~10% higher in 97-98, but ...
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Tropical Convection Perturbation (mm/d) : March 1998

— IMPORTANT: IAV of
the locations of
convection in
relation to sources.

Latitude

—=S. American & African
surface sources greater ]
impact (2-3x) during Longitude
this El Nino event.
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1) Biomass burning pollution regularly & significantly impacts UT/LS
(CO1, OH|, O4 1, aerosols?).

2) Two main cross-tropopause pathways: Slow ascentin TTL,
Quasi-horizontal exchange in jets.

3) Tropopause penetrating convection not needed to explain large-
scale features of observations.

4) Seasonal variations in both sources and dynamics important to
composition of UT/LS.

5) Dynamical variation can enhance or damp a particular source’s
impact on composition of UT/LS, depending on timing.

6) Interannual variations in UT/LS composition are mainly due to
variations in a) Indonesian biomass burning and b) locations of
convection in relation to surface sources.




October 1997 : CO Perturbation (%): 180° Longitude

Pressure

Latitude

Red Line = Approximate Tropopause

= Troposphere-to-Stratosphere Exchange (TST) via Quasi-
horizontal, Quasi-isentropic Exchange

= But, pollution in Lowermost Stratosphere (LMS) returns to
troposphere eventually.



November 1997: CO Perturbation (%)

~100 mb — Near Tropical Tropopause
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= TST via Slow Ascent in Tropical Tropopause Layer (TTL)



