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GMI: Aerosol-Cloud-Climate Interactions

• Implementation of aerosol-cloud interaction modules:
– Cloud-relevant parameters changes with meteo-fields used.
– Meteo-fields currently used: DAO, GISS, GEOS-4.

• Cloud properties are calculated from parameterizations.
• Implemented droplet formation parameterizations:

– Boucher and Lohmann, 1995 (BL) – empirical
– Abdul-Razzak & Ghan, 2000 (AG) - mechanistic
– Nenes & Seinfeld,2003; Fountoukis & Nenes,2005 (FN) – mechanistic 
– Segal & Khain, 2006 (SK) - empirical

• Assessments of indirect effect and autoconversion rate 
using various droplet formation parameterization and 
meteorology.

• U of Michigan, AEROCOM aerosol emission scenarios.

Currently Accomplished:



GMI Improvements:GMI Improvements:

Effective radius  k=1.143 (Cont); k=1.077 (Mar) 
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Cloud fraction

Mean volume radius

Cloud droplet numberLWMR

Mean collection efficiency

Dynamic viscosity of air Critical LWMR

Autoconversion rate:
3 schemes are used [Kharoutdinov & Kogan, 2000; Rotstayn, 1997]:



mSO4 (μg m-3) specified from GMI

Boucher & Lohmann (1995)

CDNC Calculation CDNC Calculation –– Empirical SchemesEmpirical Schemes

Segal & Khain (2006)
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3210CDNC calculation is based on 
regression equation that 
expresses the dependence of 
CDNC on the cloud nuclei (CN) 
concentration, on the 
parameters of the CN size 
distribution and on the vertical 
velocity at the cloud base. 

Bypass complex physics of droplet formation

The scheme is based on 
simultaneous measurements of 
sulfate and either cloud 
condensation nuclei (CCN) or 
CDNC. 
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CDNC Calculation CDNC Calculation –– Physically Based SchemesPhysically Based Schemes

Nenes & Seinfeld (2003); Fountoukis & Nenes (2005)
– For lognormal and sectional aerosol models
– Computationally efficient.
– Can treat very complex internal/external aerosol, and effects of organic 

films on droplet growth kinetics.
– In-situ validation for a wide range of stratocumulus and cumulus clouds, 

clean and polluted (Meskhidze et al., JGR, 2005; Fountoukis et al., JGR, 
2007)

– Extensive intercomparison with other parameterizations shows that it 
outperforms them for wide range of conditions (1000’s of data points).

Abdul-Razzak & Ghan (1998; 2000)
– For lognormal aerosol models
– Computationally efficient
– Kinetic limitations and the influence of surfactants on the activation 

process are neglected



Emission
Case

Simulations Considered
Emission Scenarios Emission Scenarios 
• University of Michigan (Present day, Preindustrial)
• AEROCOM (Present day, Preindustrial)
Base Case Simulations Base Case Simulations 
• Liquid Cloud Temperatures: 273 K and above
• Cloud droplet formation schemes: BL and FN
Sensitivity examined Sensitivity examined 
• Cloud temperatures:

263 K over land, 269 K over ocean (GISS GCM scheme)
• Cloud droplet formation schemes: BL, SK, AG, FN

Total Number of Simulations (for now):Total Number of Simulations (for now):

4 × 3 × 2 × 2 + 1 × 2 = 50
Nd

scheme
Met
field

Threshold
T

Emission
Case

Met
field

U of Michigan AEROCOM



Some results:
“Base Case” Simulations

(i.e., Liquid Cloud Temperatures: 273 K and above, 
BL and FN cloud droplet formation schemes.) 



FVGCM DAO

GISS”

Cloud Droplet Number (cm-3) (annual average)

Conditions:Conditions:
Prescribed updrafts (marine: 0.35 ms-1; continental: 1 ms-1)
Water vapor mass uptake coefficient, ac = 0.042 (FN) 



NS-GISS”

Droplet Effective Radii (μm)

Differences in reff
between different droplet 
activation schemes are 
solely due to differences 
in predicted CDNC 

Satellite and model values 
agree reasonably well in 
terms of land-ocean 
contrast and the 
differences between SH 
and NH. 



Cloud Optical Thickness ((ττ))

Similar general patterns 
of COD are predicted for 
different droplet 
activation schemes and 
meteorological fields used.

The modeling results are 
comparable with those 
retrieved from MODIS 
platform



Model Evaluation with Satellite Observations

Reff (μm)
DAO FVGCM GISS

ISCCP1 MODIS2
FN BL FN BL FN BL

Ocean 12.24 11.03 10.98 9.95 11.80 10.56 11.8 15.6
NH Ocean 11.36 10.11 10.25 9.35 11.19 9.92 11.6 15.4
SH Ocean 12.92 11.72 11.51 10.38 12.28 11.03 12.0 15.8
Land 8.93 8.44 8.65 8.39 8.53 8.16 8.5 12.5
NH Land 8.45 8.19 8.27 8.18 8.06 7.87 8.2 12.4
SH Land 10.96 9.62 10.02 9.14 10.47 9.40 9 .0 13.1

1) Values are taken from Han et al. [1994].
2) MODIS Terra Collection 005 (C5) Level-3 global gridded monthly averaged products at 1° by 1° resolution for April  

2000 – December 2006 were used. To minimize data contamination by ice particles, data were averaged between 
70°S to 70°N.

COD
DAO FVGCM GISS

ISCCP1 MODIS2
FN BL FN BL FN BL

Ocean 8.38 9.19 11.45 11.76 9.42 10.26 6.9 11.2
NH Ocean 7.53 8.38 12.04 11.99 9.24 10.15 6.4 10.7
SH Ocean 8.89 9.67 10.95 11.55 9.38 10.14 7.4 11.5
Land 5.82 6.19 9.57 7.93 10.74 11.15 8.1 15.7
NH Land 5.87 6.13 9.71 7.76 11.04 11.24 7.8 16.7
SH Land 5.88 6.70 9.53 8.95 9.70 10.82 8.6 13.0



Model Evaluation with Satellite Observations

This is roughly indicative of the model’s ability to capture the 
indirect effect (especially when you are comparing for the NH land 

vs. ocean contrast).

Reff (μm)
DAO FVGCM GISS

ISCCP MODISFN BL FN BL FN BL
Land/Ocean 0.73 0.77 0.79 0.84 0.72 0.77 0.72 0.80

NH Land/Ocean 0.74 0.81 0.81 0.87 0.72 0.79 0.71 0.81
SH Land/Ocean 0.85 0.82 0.87 0.88 0.85 0.85 0.75 0.83

COD
DAO FVGCM GISS

ISCCP MODISFN BL FN BL FN BL
Land/Ocean 0.69 0.67 0.84 0.67 1.14 1.09 1.17 1.40

NH Land/Ocean 0.78 0.73 0.81 0.65 1.19 1.11 1.22 1.56
SH Land/Ocean 0.66 0.69 0.87 0.77 1.03 1.07 1.16 1.13

Land/Ocean Contrast



The agreement between the two models is remarkable!!!
We are doing a goodgood job.

Comparison with online GISS II’ GCM simulation

Parameter

GISS II’ GMI

Present
day

Pre
industrial

Absolute 
change from 

pre
industrial

Present
day

Pre
industrial

Absolute 
change from 

pre
industrial

CDNC 98.82 41.76 138% 98.08 44.66 120%
COD 8.76 7.97 10% 8.42 7.41 14%

In the group we also work with the GISS GCM with online aerosol; both mass-
based only (Sotiropoulou et al., 2007) and with TOMAS microphysics (Adams 
and Seinfeld, 2002).

It is important to see how well the GMI simulation, with offline GISS 
metfields, compares to the GISS climate model simulation with online aerosol 
(both are run with fixed SST’s and reproduce the general climatology).



Annual Mean First IndirectAnnual Mean First Indirect Forcing (W mForcing (W m--22))

The spatial patterns of indirect forcing follow that of CDNC

Range: -0.99 to -1.48 Wm-2



Annual Mean Autoconversion Rate (Annual Mean Autoconversion Rate (××10101111 ss--11))

Spatial patterns anticorrelated with CDNCSpatial patterns anticorrelated with CDNC
Autoconversion much more sensitive to parameterization than AIFAutoconversion much more sensitive to parameterization than AIF

Conditions: Conditions: Eq.1 of KharoutdinovEq.1 of Kharoutdinov and Kogan, 2000and Kogan, 2000



More (interesting) results:
“Sensitivity” Simulations

(i.e., Change Liquid Cloud Temperature 
Threshold, more droplet schemes.)



FVGCM DAO

GISS”

Cloud Droplet Number (cm-3) (annual average)

Conditions:Conditions:
Prescribed updrafts 
(marine: 0.35 ms-1; 
continental: 1 ms-1)
Water vapor mass 
uptake coefficient, ac 
= 0.042 (FN) 

Despite the general 
similarity in the spatial 
patterns, there are 
considerable 
differences introduced 
by different
meteorological fields 
and droplet activation 
parameterizations



Droplet Effective Radii (μm)

Maximum droplet size is 
calculated over the 
western tropical Pacific 
warm pool region, where 
large evaporation 
associated with large sea
surface temperature 
exists. 

The smallest effective 
radius is calculated over 
continental regions with 
enhanced CCN  
concentration
(i.e., eastern China, North 
America and Western 
Europe)



Cloud Optical Thickness ((ττ))

Higher COD is predicted 
for the clouds over
anthropogenically 
influenced regions of 
eastern China, Europe,
eastern US, and some 
biomass burning regions in 
South America and
West Africa.

Different metfields 
contribute 70% 
variability in globally 
averaged COD. 
Results from different 
cloud droplet activation 
parameterizations
contribute a variability 
of 30%



Annual Mean First IndirectAnnual Mean First Indirect Effect (W mEffect (W m--22))

Spatially, there are 
strong horizontal 
inhomogeneities with the 
largest values of AIE 
predicted over SE Asia, 
Western Europe and 
Eastern US (i.e., areas 
with highest amount of 
anthropogenic sulfur 
emissions)

Different meteorological 
datasets are predicted 
to contribute 38% 
variability in globally 
averaged AIE, while
results from different 
cloud droplet formation 
parameterizations
contribute a variability 
of 62%



Annual Mean Autoconversion Rate (Annual Mean Autoconversion Rate (××10101111 ss--11))

Conditions: Conditions: Eq.1 of Eq.1 of 
KharoutdinovKharoutdinov and and 
Kogan, 2000Kogan, 2000

Different meteorological 
fields contribute 70 % 
variability in calculations 
of autoconversion.

Cloud droplet formation 
schemes are of lesser 
importance for 
autoconversion rate 
calculations.

The contrast between 
land and ocean is large.



Annual Mean Autoconversion ForcingAnnual Mean Autoconversion Forcing

PI

CDPI

A A
AA
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−

=

Present day         
Autoconversion

Presindustrial 
Autoconversion

Autoconversion Forcing

Let’s define a new concept, similar to indirect radiative forcing, 
but is more appropriate for precipitation change tendencies. 

We call this “autoconversion forcing” and it represents the 
change in autoconversion rate (without any feedbacks) from the 

anthropogenic aerosol perturbations.

Of course, we still need the response function, but a full 
climate model is needed (we will do this with the GISS)…



Annual Mean Autoconversion Forcing (%)Annual Mean Autoconversion Forcing (%)

Large forcing over 
the continents and 
the ocean of the NH 
coinciding spatially 
with regions 
affected by pollution 
plumes or long range 
transport of 
pollution plumes.

Conditions: Eq.1 of 
Kharoutdinov and Kogan, 
2000



Difference in Annual Mean Autoconversion Rate Difference in Annual Mean Autoconversion Rate 
Between BL and the Other SchemesBetween BL and the Other Schemes

PD
BL

PD
BL

PD
i

i A
AAA −

=Δ

Present day         
autoconversion 
predicted by BL

Present day 
autoconversion 
predicted by a 

scheme               
(i.e., AG, FN or SK)

(x 10-11 )  s-1

Similar patterns for all 
metfields. 

Large differences over 
the oceans; this is one 
of the most important 
source of uncertainty 
from the droplet 
schemes.

This means in the “red”
areas we need to do a 
much better job in 
computing autoconversion.



AEROCOM simulationsAEROCOM simulations

Conditions: GISS 
metfields, FN activation 
scheme, Liquid cloud 
temperatures above 263 
K over land and 269 K 
over ocean 

Nd reff

COD IF
Similar patterns for all 
properties with the 
modeling outputs using 
the emission inventory of 
the University of 
Michigan, FN scheme and 
GISS metfield. 



Computational requirements

• BL_DAO: 1 week 
• SK_DAO: 1 week + 20 min ☺
• AG_DAO: 1 week + 45 min ☺
• FN_DAO: 1 week + 60 min ☺

BL_GISS: 3 days, BL_FVGCM: 6.5 days

This shatters the common GCM dogma that 
“Mechanistic Parameterizations (FN) are too slow 

to be implemented in GCMs”



Implications and Conclusions
• GMI is able to correctly capture the land-ocean 

contrast in COD and reff and the spatial variations in 
cloud properties between the SH and the NH regions 
observed in remotely sensed data.

• The GMI aerosol simulation with offline GISS winds 
remarkably reproduces the characteristics of the 
online GISS (mass-only aerosol simulation).

• Depending on the droplet activation parameterization 
and the metfield used, global annual indirect forcing 
ranges:

-0.99 to -1.48 W m-2 for the “Base Case”
-0.68 to -1.59 W m-2 for all runs considered to date



• Different metfields lead up to 38% (Global average) 
variability in indirect forcing calculations.

• Diagnostic and empirical parameterizations contribute up 
to 62% (Global average) variability in indirect forcing. 
Although important it is a low estimate (it becomes larger 
if you use interactive microphysics - our experience with 
CACTUS and CACTUS/TOMAS support this).

• For all droplet activation parameterizations and the 
metfields used the global annual autoconversion rate 
ranges from 1.10×10-11 to 10.38×10-11 s-1 . The metfields 
contribute 70% variability and 30% is from the activation 
parameterization.

Implications and Conclusions



• The spatial patterns of autoconversion rate are similar 
for all metfields. 

• Large differences in autoconversion rates over the 
oceans; this is one of the most important source of 
uncertainty from the droplet schemes.

• Larger autoconversion forcing (60-100%) is predicted 
over the anthropogenically perturbed regions of the 
globe

Implications and Conclusions



Work in Progress – Future Plans
• Run the indirect & autoconversion forcing 

simulations for interactive aerosol microphysics. 
(Joyce)

• Use GISS-TOMAS to extract look-up tables 
(monthly averages) of the aerosol size distribution  
and standard deviation as a function of time and 
place and use them in GMI to calculate indirect & 
autoconversion forcing.

• Introduce the entraining cloud droplet formation 
parameterization that we have developed in the 
group (Barahona and Nenes, JGR, in press)

• “Tie” autoconversion with cloud droplet formation 
even better. 



Work in Progress – Future Plans
• Cloud spectrum parameterization (Hsieh and Nenes, in 

prep) to link autoconversion with activation; reduce the 
need for “tuning” autoconversion parameterizations.

• Examine the potential effect of organic compounds on 
CCN formation (using the “insoluble” fraction of the 
aerosol).

• Assess the uncertainty in cloud droplet number, indirect 
radiative forcing and autoconversion rate associated 
with application of Köhler theory.

• Explicit calculation of the effective radius and the 
indirect forcing from “k” – Examine the sensitivity to 
met-fields and droplet formation parameterizations.

• … and the list goes on.



Ongoing projects in the group of 
potential interest to GMI

(Jose, can we have a few more minutes?)



Procedure:
• Use in-situ data and assess CCN closure, for various 
assumptions on chemical composition taken in GCMs.

• Quantify CCN prediction error 

• Incorporate into GCM and assess uncertainty in 
Cloud droplet number concentration (CDNC)
Aerosol indirect forcing
Autoconversion of cloudwater to rain

Determine regions where uncertainty is small; define 
regions where more in-situ constraints are needed.

Assess the indirect forcing uncertainty Assess the indirect forcing uncertainty 
arising from application of Karising from application of Kööhler theoryhler theory



CCN Prediction UncertaintyCCN Prediction Uncertainty

The prediction error decreases as 
supersaturation increases 

Error range: 10 - 60%

From the ICARTT datasetFrom the ICARTT dataset

We now have datasets from GoMACCs (Houston, 2006), Mexico City 
(2006), Finland (Hyÿtialä, 2007), Greece (Crete, 2007), Monterey, CA 
(2007). We will have a characterization of CCN prediction uncertainty 

for different locations, aerosol characteristics and seasons.

We are developing a global characterization of CCN prediction We are developing a global characterization of CCN prediction ““skillskill””
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Indirect Forcing Uncertainty

−+

−= max
TOA

max
TOAIF CFCFU

Larger uncertainty is predicted 
downwind of industrialized and 

biomass burning regions

The least indirect forcing 
uncertainty is predicted over 
deserts and the subtropical 

southern oceans

Global average: 50%

120%806040200

Using the ICARTT dataset in online GISS (Sotiropoulou et al., inUsing the ICARTT dataset in online GISS (Sotiropoulou et al., in press)press)

Range: 10-120%

It would be IDEAL to repeat this within the GMI for different It would be IDEAL to repeat this within the GMI for different 
met fields, droplet schemes and of course, with all the CCN met fields, droplet schemes and of course, with all the CCN 

data at hand! data at hand! 



ISORROPIAISORROPIA--II: A new thermodynamic II: A new thermodynamic 
equilibrium model forequilibrium model for KK++/Ca/Ca2+2+/Mg/Mg2+2+/NH/NH44

++/Na/Na++/ / 
SOSO44

22--/NO/NO33
--/Cl/Cl--/H/H22O AerosolO Aerosol

- Solve the full thermodynamic partitioning 
equations for aerosol systems with the major 
inorganic precursors.

- Predict aerosol phase(s), composition of each, 
and of course, water uptake.

- NASA GISS Global Climate Model
- EPA Community Air Quality model

(CMAQ)
- EPRI’s CAMx model
- Sonoma Tech’s UAM-AERO

- Meteo-France Group
- Max Planck Institute for 

Tropospheric Research
- University of Athens, Greece
- Ford Motors - Aachen

Some groups using ISORROPIA



Gas phase: HNO3, HCl, NH3, H2O

Liquid phase: Na+, NH4
+, 

H+, OH-, HSO4
-, SO4

2-, NO3
-, 

Cl-, H2O, HNO3(aq),HCl(aq), 
NH3(aq), Ca2+, K+, Mg2+

Solid phase: NaHSO4 , NH4HSO4 , Na2SO4 , NaCl, (NH4)2SO4, 
(NH4)3H(SO4)2, NH4NO3, NH4Cl, NaNO3, K2SO4, KHSO4, KNO3, 
KCL, CaSO4, Ca(NO3)2, CaCL2, MgSO4, MgCL2, Mg(NO3)2

The “ISORROPIA II” model: Possible species

Species in ISORROPIA-II



New Ice Nucleation Parameterization
• Currently looking at 

homogeneous 
freezing

• Freezing of 
supercooled 
droplets, influenced 
by:
– Thermodynamical 

and dynamical 
state: (RHi, T, P, 
updraft velocity) 

– Composition and 
size: their role is 
still not well 
understood

• Stochastic process
• Very rapid
• Proceeds even after 

Smax has been 
surpassed 

sice

Nice(cm-3)

Pf

smax

time (s)
Example: parcel model simulation of cirus cloud 
formation. To=233 K, P=340 hPa, W=0.2 ms-1

Barahona D. and Nenes A.,2007, in preparation.



Parameterizing Ice Formation
• For each ice particle we trace back its growth and find the 

Si at which the freezing occurred, then we calculate nc(Dp, 
Si)

Freezing Growing

• We look for an asymptotic value of Ni rather than its value 
at Smax

• Based on first principles; avoid “artificial” constants (i.e., 
freezing time scales or constant freezing thresholds) 
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Parameterization: Homogeneous 
Nucleation
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Barahona D. and Nenes A.,2007, in preparation.

Example: To=233 K, 
P=220 hPa, W=0.2 ms-1



Thank you!



Supporting Material



Cloud Droplet Number (cm-3) (annual average)

Conditions:Conditions:
Prescribed updrafts (marine: 0.25 ms-1; continental: 0.5 ms-1)
Water vapor mass uptake coefficient, ac, is set to 0.06
Bulk microphysics

BLNS



Cloud Droplet Number (cm-3) (annual average)

Conditions:Conditions:
Prescribed updrafts (marine: 0.25 ms-1; continental: 0.5 ms-1)
Water vapor mass uptake coefficient, ac, is set to 0.06
Detailed microphysics (CACTUS/TOMAS)

BLNS



Precipitation formation in GCMs is often decoupled from 
activation, and generation of rainwater is expressed in terms of a 
'critical' liquid water content beyond which rainwater production 
becomes efficient:

This is not how it happens in nature; rain is a collection process 
and must be treated as such, if possible.
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conversion rate 'constants'

Parameterizing drizzle: how it’s done now



Improved precipitation parameterizations that consider microphysics 
exist, and are also used,

This is a step in the right direction, but the effects of spectral 
broadening (droplet size distribution) are not explicitly considered.

We seek an explicit link between aerosol, activation and subsequent 
coalescence at the "updraft" scale.

We are doing this now by predicting droplet size distribution in the 
updrafts that form clouds online in the GCM.

(Rotstayn, 1997)
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Parameterizing drizzle: how it’s done now



Two-moment schemes developed for small-scale models can be used 
instead:

Parameterizing drizzle: what we will implement

We have all the elements we need (dispersion, droplet size) for a 
comprehensive treatment of precipitation. Why not include it in the 
GCM?

Challenge: How do we obtain these parameters in the global model?

Solution: From the Nenes and Seinfeld Activation Parameterization

(e.g., Cohard and Pinty, 2000; there are more like R4 and R6 schemes of Liu & Daum)
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Predict size distribution with 
Nenes and Seinfeld 
parameterization and cloud parcel 
model for adiabatic cases of 
CRYSTAL-FACE (cumulus) clouds. 

Use droplet number & size 
distribution to predict 
autoconversion rate.

Use in-situ data to calculate 
autoconversion as well. 

The parameterization (and parcel 
model) capture the spectral width 
for adiabatic clouds well. 

Is it always like this? No.

We need to address this problem.
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Parameterizing drizzle: predicting droplet size in GCMs

Hsieh and Nenes, in prep.



Droplet size distribution
and effects of entrainment

• Aim to predict droplet size distribution directly from our parameterizations; 
this would allow explicit computations of reff and autoconversion. 

• Current parameterizations are adiabatic. Clouds are generally not. 
• This affects primarily the computation of size (adiabatic gives too narrow 

distributions).

• Relative dispersion as predicted 
by Fountoukis and Nenes (2005) 
parameterization vs. in-situ
data.

• Parameterization and cloud 
parcel model are in excellent 
agreement, but underpredict 
dispersion by a factor of two.

• An entraining parameterization 
would improve this because 
entrainment broadens the 
distribution. 
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Entraining cloud parameterization
(Barahona and Nenes, JGR, in press)

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+07 1.0E+08 1.0E+09 1.0E+10 1.0E+11
CDNC (m-3) Parcel

CD
NC

 (m
-3

) P
ar

am
et

er
iz

at
io

n

The first parameterization of its kind.
Complex organics can be treated, same conceptual framework
(“population splitting”) as the adiabatic parameterization. 
Mixing is parameterized in terms of an entrainment rate.
Versions for lognormal and sectional aerosol developed.
Same CPU requirements as the adiabatic “version”.

We’ve looked at 4000 cases
Average error:10%

We plan to use CRYSTAL-FACE, 
CSTRIPE, ICARTT, MASE, 

TEXAS-AQS data to constrain 
the entrainment rate.

The predicted in-cloud droplet
size distribution will be evaluated 

with the same dataset.



New cloud droplet formation parameterization
(Includes entrainment)

Why need a new parameterization?
• Current parameterizations are adiabatic. Clouds are generally not. 
• Droplet number predictions are good even for slightly diabatic conditions 

(although Nd can still be overestimated for strong entrainment).
• Nenes and Seinfeld can predict droplet size distribution, but they are too 

narrow (adiabatic), so autoconversion calculations would generally be “off”.

• Comparison of predicted size 
distribution “width” vs. liquid 
water content for non-adiabatic 
CRYSTAL-FACE (cumulus) clouds. 

• Parameterization and cloud parcel 
model agree great with each 
other, but not with the data (even 
though cloud droplet number is 
captured to within 5%!).

• An entraining parameterization 
would improve this because 
entrainment broadens the 
distribution. 
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Conceptual model for Ice Formation

• Droplets freeze in groups at the same supersaturation, so’, and grow defining the crystal size distribution, nc(s, Dp)
• The fraction of frozen droplets is determined by the 

probability of freezing Pf (so’ )
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Modeling FrameworkModeling Framework
• Aerosol module (Liu et al., 2005) coupled to GMI advection core
• Emissions: SO2, DMS, BC, OC, mineral dust, and sea salt
• Chemical production of sulfate, gravitational sedimentation, dry

deposition, wet scavenging in and below clouds, and hygroscopic 
growth

• In cloud Liquid Water Content  (Hack, 1998)
• Stratiform and Convective cloud fractions (Sundqvist et al., 1978; Xu 

and Krueger, 1991)
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