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DAS - EPA

Ozone Bias for Summer 2004
AOzone : GMI - EPA

Jul Aug Sep

mean |bias|= 8.3 ppbv mean |bias|= 7.9 ppbv mean |bias|= 5.3 ppbv
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HTAP CTM/GCM Intercomparison: Surface Ozone (ppbv)
courtesy of Arlene Fiore (NOAA/GFDL)
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HTAP CTM/GCM Intercomparison: Surface Ozone (ppbv)
courtesy of Arlene Fiore (NOAA/GFDL)
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Objectives, etc.

sImprove the simulation of surface ozone in global
models in a computationally-efficient way.

—Arlene: MOZART CTM & AM2-Chem CCM :
chemistry, interannual variability of high bias, etc.

—Andrea: Sub-grid scale variability — mosaic technique

—Ken Pickering: various horizontal resolutions already in
another funded proposal.

*Use the GEOS CCM to simulate present and mid-
century (2041-2050) surface ozone.

—Complementary proposal (Colarco et al.) to look at
present and mid-century aerosols.



Constraining Uncertainty in Simulations of Tropospheric
Composition: Implications for Predictions of Future Air Quality

Task 1:

Parameterize Sub-grid Scale Variability of Ozone and its Precursors



The Issues:
» Spatial Heterogeneity on sub-grid scales in emissions of ozone precursors
* Non-linear dependance of ozone production rates on precursor concentrations

(tarbulent diffusion is relevant)

* NOx and isoprene emissions typically not collocated - advection is relevant
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Existing Solutions:

Plumes model (Sillman et al., JGR 1990,
also Jacob et al., JGR 1993)

“ __. operates by dividing the model domain mto sub-
categones and calculating photochemical production and
loss terms based on average concentrations of chemical
species within each category. ... average concenfrations
are calculated with satisfactory accuracy using only two
plumes, a genenic "urban" plume and a generic "power
plant” plume.

FITa R

| 4 i
Bol £ 2

3 L = _ oW dr
— kA H-L ] B ihaa ;e

I
i = | T
SRELEER S g Ak [re] i s [T

e | ni Fis

Plume in Grid (PiG) treatment of point
sources (Karamchandam et al., JGR 2002).

Each reactive plume contains its own chemistry which
continues untll ‘matunty’, a 2nd order turbulent dispersion,
and the possibility of plume growth and interaction with
other plumes.
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Proposed ““chemistry-mosaic” technique™:

Parameterize sub-grid scale variability in biogenic emissions, turbulent transport and
photochemistry together to preserve the linkages among all these processes.

Grid boxes typically include a “power plant™, an “urban™ and
a “clean”™ tile (after Sillman et al,, JGR, 1990).

Each “chemistry tile™ has its own level of emissions,
chemistry, and turbulent diffusion. Fractional area 1s allowed
to vary with height, 1s predicted based on diffusion, and can
eventually be advected.

i Evolution equations for each constituent are solved for each
tile and for the gnd box as a whole, using the technique
described in Molod (Tellus, 2000).

(& Turbulent surface layer fluxes are currently computed
j separately over catchment of the Koster ef al. { JGR, 2000)
land surface model. A mapping from “catchment tile space™ to
“chemistry tile space™ will be developed by overlaying
biogenic emissions maps and catchments maps.
Clean




