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POA is Semi-Volatile
Robinson et al. 2007

POA tends to evaporate upon dilution



Unexplained SOA
Robinson et al. 2007



Particulate Organics are Highly Oxidized
•HOA ≈ fresh vehicle exhaust

•OOA: complex, but largely from atmospheric 
oxidation of VOCs

•OOA fraction is high, even in urban areas

•Chemical production of organic material more 
important than previously recognizedimportant than previously recognized

“Urban”
“Urban 
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Zhang et al., GRL 2007



Goals
D l l b l i l d l th t• Develop a global organic aerosol model that 
accounts for recent scientific advances
• Treat POA as semi-volatileTreat POA as semi volatile
• Account for broader range of potential SOA 

precursors and chemistry
E l t thi d l i t b d t• Evaluate this model against a broader spectrum 
of observations
• Organic aerosol (OA) mass concentrationsOrganic aerosol (OA) mass concentrations
• Volatility from thermal denuder measurements
• Degree of oxygenation from AMS measurements
• Isotopic radiocarbon data to distinguish fossil and 

contemporary carbon sources
• Host: GISS “unified” model (GCM O aerosols)• Host: GISS unified  model (GCM, O3, aerosols)



Volatility “Basis Set” Model
Di t ib t OA di t l f ff ti• Distribute OA on a discrete scale of effective 
saturation concentrations (Donahue et al., 2006)

Ab ti titi i th d ib• Absorptive partitioning theory describes gas-
particle partitioning of OA compounds

Prior Models

This Model

Saturation Concentration (g m-3)



Model Schematic
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Model vs Observations - Composition

 HOA - Hydrocarbon-like OA
 OOA - Oxygenated OA

Near-urban Rural

Zhang et al., 2007



Model vs Observations - Volatility

*Data: David Lee & Ilona Riipinen



Model vs Observations - Volatility

 Comparisons for Mexico City (MILAGRO) and Los Angeles (SOAR) 
are similar

*Data: David Lee & Ilona Riipinen



Model vs Observations – Sources

 Radiocarbon measurements allow “dating” of organic aerosol
 Fossil: gasoline, diesel, coal (depleted in C14)

Summer

 Contemporary: wood, charcoal, agricultural residue, biogenic VOC’s

*Schichtel et al., 
2008



CCN / Microphysical Model Description

Aerosol species
• Sulfate

Host models
• GISS (GCM)

• Sea-salt
• EC: ext/int mixed

OC: hydro phobic/philic

• GEOS-CHEM (CTM) 

Size-resolved • OC: hydro-phobic/philic
• Mineral dust

Chemistry

emissions/deposition

H SO (g)Chemistry
• DMS→ SO2 → sulfate
• Dial in SOA “mechanism”

Microphysics
• TOMAS algorithm
• Condensation/coagulation

H2SO4(g)

• EC/OC “aging”: 1.5 days
• Modified Kohler theory 

(h d hili OM 0 12)

• Condensation/coagulation
• Nucleation (binary, ternary, 

empirical “activation”, ion-
(hydrophilic OM:  = 0.12)

p ,
induced)



TOMAS Overview

• TwO-Moment Aerosol Sectional algorithm
• Size range usually 10 nm – 10 μm
• Can go down to 1 nm for nucleation-focused studies
• 30 size sections (10 per decade of diameter)
• Nucleation condensation coagulationNucleation, condensation, coagulation
• Moments = 1) aerosol number and 2) aerosol mass
• Sulfate, sea-salt, OC/EC, mineral dust
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T2: CCN Budget and Ultrafines

Ultrafine Mode CCN Mode

100 nm Condensation = 1.7 
cm-3 day-1(Bi ) N l ti cm 3 day 1

Cloud processing = 
9.9 cm-3 day-1

(Binary) Nucleation             
J1 = 310 cm-3 day-1

J10 = 14 cm-3 day-1

Coagulation growth 
= 0.6 cm-3 day-1

Coagulation = 52 g
cm-3 day-1

Emissions = 58 
cm-3 day-1

Deposition = 9 
cm-3 day-1

Emissions = 3.2 
cm-3 day-1

Deposition = 
15.4 cm-3 day-1

GISS-GCM; global average; Sulfate, sea-salt, carbonaceous, dust



Black Carbon Reductions

• Many have suggested that BC reductions are a fast way 
to slow global warming

• Black carbon and global warming• Black carbon and global warming
• Direct effect: ~0.4 W/m2

• Semi-direct effect: 0.3 W/m2

• Albedo effect on snow: ~0 1 W/m2• Albedo effect on snow: ~0.1 W/m2

• But… BC controls will
• Reduce primary particle emissions
• CCN concentrations
• Reduce the indirect effect (-0.3 to -1.8 W/m2)

• Will BC reductions slow global warming??g g
• Collaborators: John Seinfeld/Anne Chen (Caltech); 

Thanos Nenes (GaTech); Yunha Lee (CMU)



BC Controls Reduce CDNC 
In global annual averageIn global annual average,

50% FF: CDNC reduced by 4.6%
50% CARB: CDNC reduced by 8 7%

CDNC Smax Reff

50% CARB: CDNC reduced by 8.7%

CDNC 
[cm-3 ]

Smax
[%]

Reff
[μm]

195.6 0.26 8.27

50% FF    

Base case
Ratio of cloud droplet 

number (CDNC)



BC Reductions: Forcing Assessment

• For a 50% reduction in fossil fuel EC/OC/N:
• FF-BC absorption: 0.2 W/m2 → 0.1 W/m2 = -0.1 W/m2

• Semi-direct: 0.3 W/m2 → 0.23 W/m2 = -0.07 W/m2

• Snow albedo: 0.1 W/m2 → 0.07 W/m2 = -0.03 W/m2

N t 0 2 W/ 2 ( d d l b l i )• Net: -0.2 W/m2 (reduced global warming)
• But…

R d d i di t ff t (thi k) 0 13 W/ 2• Reduced indirect effect (this work) = +0.13 W/m2

• CCN impacts of reducing black carbon appear to 
largely (completely?) offset climate benefitslargely (completely?) offset climate benefits



Hypothesis: Cosmic Rays and Clouds

Solar irradiance ↑

Cosmic rays ↓
Cloud 
droplets ↓Cosmic rays ↓ droplets ↓

Ion-induced 
nucleation ↓

Cloud 
brightness / nucleation ↓ cover ↓

Aerosol 
particles and 
CCN

Global 
temperature ↑CCN ↓ temperature ↑



Cosmic Rays and CCN

• Experiment 1: Modgil
• Modgil (2005) parameterization for ion-

i d d l tiinduced nucleation
• Simulation 1: Low solar activity (~1986)

Si l ti 2 Hi h l ti it ( 1990)• Simulation 2: High solar activity (~1990)
• Experiment 2: Ion limit (upper bound)

• All ions nucleate new particle• All ions nucleate new particle
• Simulation 1: Low solar activity (~1986)
• Simulation 2: High solar activity (~1990)• Simulation 2: High solar activity (~1990)

• Ion production rate changes by ~30% (20th

century; solar min/max)y; )



Ion-Limited Nucleation: Solar Effect on CCN
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Conclusions

• Global organic aerosol model with “volatility 
basis set” accounts for new knowledge

V l tilit f POA• Volatility of POA
• Additional precursors of SOA
• Flexible mechanism for various chemical processesFlexible mechanism for various chemical processes

• New observations place tighter constraints on 
organic aerosol models
• New model matches OOA and volatility better
• Radiocarbon: fossil vs contemporary carbon

• Cloud condensation nuclei / aerosol• Cloud condensation nuclei / aerosol 
microphysics modeling
• Allows mechanistic understanding of CCN budgetg g


