^{210}Pb and ^{7}Be Simulations With DAO, GISS-II’, fvGCM, GEOS-4 DAS and GEOS-5 DAS meteorological fields

Hongyu Liu
National Institute of Aerospace
@ NASA Langley

With
David Considine (NASA Langley)
Bob Yantosca, Daniel Jacob (Harvard)

GMI Science Team Meeting
UC Irvine, March 17-19, 2008

Acknowledgement: GMI core team & Harvard Atmos. Chem. Modeling Group
Radionuclides ^{222}Rn, ^{210}Pb and ^7Be

- ^{222}Rn [Jacob et al., 1997]:
 - 1.0 atom cm$^{-2}$ s$^{-1}$ from land (nonfreezing)
 - emission reduced by a factor of 3 (freezing)
 - sink: decay (half-life 3.8 days)

- ^{210}Pb:
 - decay daughter of ^{222}Rn
 - sinks: wet and dry deposition, decay (half-life 22.3 yrs)

- ^7Be [Lal and Peters, 1967]:
 - produced by cosmic ray spallation reactions in the stratosphere and upper troposphere
 - sinks: wet and dry deposition, decay (half-life 53.3 days)
210Pb-7Be are a useful pair for testing wet deposition and transport processes in a global model because of their contrasting sources at low and high altitudes.

Lal and Peters [1967] source

1.0 atom cm$^{-2}$ s$^{-1}$

Jacob et al. [1997]
Objectives

- Continue to provide diagnostic support for GMI using atmospheric radionuclides
- Examine the constraints from both ^{210}Pb and ^{7}Be on wet deposition and transport in GMI and their uncertainties
- Explore the usefulness of ^{7}Be in assessing cross-tropopause transport in global models
Harvard wet deposition scheme for GMI

$^{222}\text{Rn}-^{210}\text{Pb}-^{7}\text{Be}$ simulation results
 ✓ Annual average concentrations
 ✓ GEOS4-DAS ^{222}Rn & ^{210}Pb: GMI vs. GEOS-Chem

Evaluation with surface and UT/LS data
 ✓ Surface concentrations and deposition fluxes
 ✓ UT/LS concentrations

Utility of ^{7}Be for evaluating STE in global models
 ✓ DAO, GISS-II’, fvGCM and GEOS4-DAS

$^{210}\text{Pb}-^{7}\text{Be}$ simulation with GEOS-5
 ✓ Updated wet deposition scheme
 ✓ Global budget & STE
Harvard wet deposition scheme for GMI

- Lawrence & Crutzen [1998]
- Giorgi & Chameides [1986]
- Balkanski et al. [1993]
- Not included in GMI & standard GEOS-Chem

- Scavenging efficiency $f = 40\% \text{ km}^{-1}$
- Convective Updraft
- Rainout
- Washout / Reevaporation
- Entrainment → Detrainment

- Aerosol partitioning into ice crystals 0-100%
- Grid-scale settling velocity V_e (0-20 cm s$^{-1}$)
- Ice Particle Gravitational Settling (Cirrus Precipitation)

- Stratiform Cloud

- Rainout
- Washout / Reevaporation
- Subgrid precipitating areal fraction F_k (global average 2.5% in column, 6% at surface)

Liu et al. [2001]; Park et al. [2004]
Annual Average ^{222}Rn (mBq/SCM)
Annual average ^{210}Pb (mBq/SCM)
Annual average 7Be (mBq/SCM)
GEOS4-DAS 222Rn and 210Pb (July 2004): GMI vs GEOS-Chem

GMI has less 222Rn & 210Pb in the stratosphere than GEOS-Chem does: less efficient convective transport in GMI.

GMI and GEOS-Chem used different sets of variables for Hack shallow convection.
Evaluation of Simulated ^{210}Pb Concentrations With UT/LS Data

GMI & GEOS-Chem

GFDL AM2

✓ fvGCM, GEOS4-DAS and GEOS5-DAS: low bias in UT/LS
Evaluation of Simulated 210Pb With Surface Data

210Pb Concentration (mBq/SCM)

210Pb Deposition Flux (Bq/m²/yr)

✓ 222Rn emissions in GEOS-Chem biased low. Will look into this!
Evaluation of Simulated 7Be Concentrations With UT/LS and Surface Data

The 7Be observations were corrected to the 1958 solar maximum source [Koch et al., 1996].
Evaluation of Simulated 7Be Deposition Fluxes With Surface Data

7Be Deposition Flux

7Be Flux (Bq/m2/yr)

Latitude (°N)

- GMI/DAO
- GMI/GISS
- GMI/FVGCM
- GMI/GEOS4-DAS
- GC/GEOS4-DAS
- GC/GEOS5-DAS

25 Observation Sites

✓ DAO (GISS II') overestimates 7Be deposition fluxes at mid-latitudes (high latitudes).
The scaling factor A is determined by:

$$A = \frac{(1-0.25) / 0.25 \times F}{1-F},$$

where F is the fraction of surface air of strat. origin at NH mid latitude.

The scaling factors for DAO, GISS and GEOS4-DAS are about 2.5, 2.7 and 1.5, respectively.

Observed $^{7}\text{Be} / ^{90}\text{Sr}$ ratio \rightarrow 23-27% of ^{7}Be in surface air at NH mid lat is of strat. origin [Dutkiewicz and Husain, 1985].

To correct excessive STE in the simulations, we reduce X-tropopause transport flux by artificially scaling down the strat. ^{7}Be source in the simulation of tropospheric ^{7}Be (not strat. ^{7}Be) [Liu et al., 2001].
Sensitivity to the Location of Tropopause

\[L_{\text{tropopause}} \]

Strat \(^{7}\text{Be} / \text{Total }^{7}\text{Be} \times 100\), Annual Average

\[L_{\text{tropopause}} + 1 \]

Strat \(^{7}\text{Be} / \text{Total }^{7}\text{Be} \times 100\), Annual Average

GMI/DAO

GMI/fvGCM

GMI/GISS

GMI/GEOS4-DAS

GMI/DAO

GMI/fvGCM

GMI/GISS

GMI/GEOS4-DAS
Adjustment of 7Be Cross-Tropopause Flux

Before

Strat 7Be / Total 7Be x 100, Annual Average

- GMI/DAO
- GMI/fvGCM
- GMI/GISS
- GMI/GEOS4-DAS

After

Strat 7Be / Total 7Be x 100, Annual Average

- GMI/DAO
- GMI/fvGCM
- GMI/GISS
- GMI/GEOS4-DAS
The 7Be deposition flux offers a strong constraint on cross-tropopause transport in global models.
Wet Deposition Scheme for GEOS-5

✓ Revisions:

1). Rainout is suppressed at temperatures below 258K.
 - Fraction of large-scale precip. in total precip. is much larger in GEOS-5 than in GEOS-4.

2). Rainout/washout for convective precipitation is turned off.

✓ Will test the scheme using new variables DQRCON & DQRLSC (i.e., production rates of precipitating condensate from convective and large-scale processes).
Annual Average Global Budgets of ^{210}Pb and ^7Be in the GEOS-Chem Troposphere (GEOS-5, 2005)

<table>
<thead>
<tr>
<th></th>
<th>^{210}Pb</th>
<th>^7Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden, g</td>
<td>250.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Residence time, days</td>
<td>8.3</td>
<td>27.3</td>
</tr>
<tr>
<td>Sources, g d$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from stratosphere</td>
<td>0.6</td>
<td>0.06</td>
</tr>
<tr>
<td>within troposphere</td>
<td>29.4</td>
<td>0.13</td>
</tr>
<tr>
<td>Sinks, g d$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry deposition</td>
<td>4.3</td>
<td>0.01</td>
</tr>
<tr>
<td>wet deposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stratiform</td>
<td>14.5</td>
<td>0.08</td>
</tr>
<tr>
<td>convective</td>
<td>11.1</td>
<td>0.05</td>
</tr>
<tr>
<td>radioactive decay</td>
<td>0.02</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Stratospheric fraction (%) of 7Be, Annual Average
GEOS-Chem with GEOS-5 (2005)

Stratospheric fraction of 7Be is largest in polar regions (especially the Arctic), instead of at mid-latitudes! Results suggest that STE is too fast at high latitudes in GEOS-5.

Important implications for interpreting GEOS-5 chemical forecasts and NRT simulations (e.g., ozone) during the ARCTAS field campaign.
Summary

- The atmospheric distributions of 210Pb and 7Be are simulated with GMI (GEOS-Chem) driven by DAO, GISS-II’, fvGCM and GEOS-4 DAS (GEOS-4 DAS and GEOS-5 DAS) meteorological fields. Results are evaluated with surface and UT/LS data. The UT/LS 210Pb concentrations in fvGCM, GEOS-4 DAS and GEOS-5 DAS are biased low.

- The 7Be simulation, which is computationally cheap and technically simple, and observed 7Be deposition fluxes as well as concentrations may be used routinely to assess cross-tropopause transport in global models. fvGCM appears to have the most reasonable cross-tropopause transport, resulting in simulated 7Be deposition fluxes most close to the observations.

- GEOS-5 DAS appears to have too fast downward transport from the stratosphere in polar regions, especially over the Arctic.

- Excessive cross-tropopause transport of 7Be may indicate a too strong stratospheric influence on tropospheric ozone. Future work will explore the relationship between the cross-tropopause fluxes of 7Be and ozone within GMI.
EXTRA SLIDES
Stratospheric Fraction of 7Be

Strat 7Be / Total 7Be x 100, March

- GMI/DAO
- GMI/fvGCM
- GMI/GISS
- GMI/GEOS4-DAS
Effect of Convection: 222Rn

% 222Rn due to convection, Annual Average

- **GMI/DAO**
- **GMI/fvGCM**
- **GMI/GISS**
- **GMI/GEOS4-DAS**
Effect of Convection: ^{210}Pb

^{210}Pb due to convection, Annual Average

- **GMI/DAO**
- **GMI/fvGCM**
- **GMI/GISS**
- **GMI/GEOS4-DAS**
Stratospheric Fraction of 210Pb

Strat 210Pb / Total 210Pb x 100, Annual Average

- GMI/DAO
- GMI/fvGCM
- GMI/GISS
- GMI/GEOS4-DAS